Prąd wytwarza pole magnetyczne – budujemy elektromagnes

Wiadomości ogólne

  • Czas trwania zajęć: 2h
  • Określenie wiedzy i umiejętności wymaganej u uczniów przed przystąpieniem do realizacji zajęć:

    Uczeń:

    • potrafi scharakteryzować pole magnetyczne,
    • wie jak powstaje pole magnetyczne wokół przewodnika z prądem,
    • wie na czym polega zjawisko magnesowania ferromagnetyków,
    • wie czym są domeny magnetyczne.

  • Pojęcia kluczowe:
    • ferromagnetyki,
    • elektromagnes,
    • prąd elektryczny,
    • pole magnetyczne.

  • Hipoteza sformułowana przez uczniów:

    1. Elektromagnes wytwarza pole magnetyczne w wyniku przepływu przez nie prądu elektrycznego.

 


Skopiuj poniższy kod HTML, by umieścić artykuł na swojej stronie:

Udostępnij artykuł:

Oprogramowanie do przeglądania plików:

Doświadczenie

  • Potrzebne materiały, przyrządy:
    • drut izolowany,
    • gwóźdź,
    • szpilki, drobne gwoździe,
    • płaska bateria (4,5V).

  • Uwagi dotyczące BHP:

    Doświadczenie jest proste i bezpieczne, ale pamiętaj: w przypadku niespodziewanych trudności lub kłopotów należy przerwać doświadczenie i niezwłocznie zwrócić się do nauczyciela/ki.

    Ważne: Podczas wykonywania doświadczeń przestrzegaj zasad BHP oraz stosuj się do regulaminu pracowni fizycznej.

  • Zmienne występujące w doświadczeniu:
    • zmienne niezależne – napięcie źródła 4,5V,
    • zmienne zależne – zachowanie szpilek,
    • zmienne kontrolne – grubość i rodzaj drutu.

Instrukcja wykonania doświadczenia:

Zadanie A:

Przygotuj izolowany drut (najlepiej miedziany), gruby stalowy gwóźdź, płaską baterię (4,5 V) oraz drobne przedmioty żelazne (gwoździki, szpilki). Nawiń drut na gwóźdź, a jego końce podłącz do baterii. Wyjmij gwóźdź ze zwojnicy, a następnie podłączoną do baterii zwojnicę zbliż jednym końcem  do szpilek. Umieść gwóźdź w zwojnicy  i ponownie zbliż do szpilek. Co zauważasz?

Animacja pokazuje jak zbudować elektromagnes. Potrzebne materiały: drut miedziany, gwóźdź, płaska bateria i szpilki. Nawijamy spiralnie drut miedziany na gwóźdź. Wyjmujemy gwóźdź z powstałej spirali i podłączamy ją do baterii. Zbliżamy do szpilek szpilki są słabo przyciągane. Wkładamy z powrotem gwóźdź do podłączonej do baterii spirali i zbliżamy do szpilek. Szpilki są mocno przyciągane przez powstały elektromagnes.

Przerwij obwód elektryczny. Co obserwujesz?

Jak wyjaśnić wynik doświadczenia?

  • Podsumowania doświadczenia:
    1. Czy można wzmocnić oddziaływanie magnetyczne zwojnicy?
    2. Jak zbudowany jest elektromagnes?

Skopiuj poniższy kod HTML, by umieścić wideo na swojej stronie:

Skopiuj poniższy kod HTML, by umieścić artykuł na swojej stronie:

Udostępnij artykuł:

Oprogramowanie do przeglądania plików:

Podstawa programowa

  • Cele, które zostaną osiągnięte w wyniku przeprowadzenia doświadczenia przez nauczyciela i uczniów pod kierunkiem nauczyciela:

a) wymagania ogólne – cele

    • II Przeprowadzanie doświadczeń i wyciąganie wniosków z otrzymanych wyników.
    • III Wskazywanie w otaczającej rzeczywistości przykładów zjawisk opisywanych za pomocą poznanych praw i zależności fizycznych.

b) wymagania szczegółowe - treści nauczania

    • 5.5 opisuje działanie elektromagnesu i rolę rdzenia w elektromagnesie.

Skopiuj poniższy kod HTML, by umieścić artykuł na swojej stronie:

Udostępnij artykuł:

Oprogramowanie do przeglądania plików:

Materiały do pobrania


Skopiuj poniższy kod HTML, by umieścić artykuł na swojej stronie:

Udostępnij artykuł:

Oprogramowanie do przeglądania plików:

Słowniczek

EKSPERYMENT, prowadzony zgodnie z metodą naukową, rozumiany jest jako proces, w trakcie którego badacz, uczeń, wprowadza zaplanowaną zmianę jednego czynnika i bada, jakie ta zmiana przynosi rezultaty, uważając przy tym, by pozostałe czynniki pozostały niezmienne.

 

OBSERWACJA rozumiana jako zaplanowane gromadzenie faktów, bez wprowadzania jakichkolwiek ingerencji w badane zjawisko. W trakcie obserwacji nie występuje zmienna niezależna, ponieważ nie ingerujemy w badany proces.

 

Eksperyment i obserwacja są realizowane zgodnie z metodą naukową, a to oznacza:

Postawienie PYTANIA BADAWCZEGO - Pytanie może być zadane przez uczniów lub zaproponowane przez nauczyciela. Pozwala to ukierunkować myśli i skoncentrować się na badanym problemie, uświadamia, że badania naukowe są wynikiem zaplanowanego działania.Dobrze skonstruowane pytanie badawcze jest pytaniem otwartym - uczeń sam chce znaleźć na nie odpowiedź.

Kolejnym krokiem jest postawienie HIPOTEZY, czyli prawdopodobnej, przewidywanej i wymyślonej przez uczniów odpowiedź na pytanie badawcze. Pamiętajmy, że przed wykonaniem eksperymentu nie ma złych lub dobrych hipotez, każda, nawet najbardziej śmiała jest dopuszczalna.

Kolejny etap to określenie ZMIENNYCH:

    • ZMIENNA NIEZALEŻNA czyli to, co zmieniamy.
    • ZMIENNA ZALEŻNA czyli wielkość, którą będziemy mierzyć, obserwować.
    • ZMIENNE KONTROLNE czyli wszystko to, co musi zostać niezmienne.

ZMIENNA ZALEŻNA to parametr mierzony podczas doświadczenia, zmieniający się w zależności od zmian ZMIENNEJ NIEZALEŻNEJ.

  

W doświadczeniu naukowym pojawiają się również PRÓBY KONTROLNE. Bez kontroli nie można jednoznacznie stwierdzić, czy wyniki doświadczenia są wiarygodne. Kontrola pozytywna to dodatkowa próba, którą przeprowadzamy identycznie, jak próbę badawczą, ale z użyciem takiego czynnika (jeśli jest znany), który na pewno wywołuje pożądany efekt. Z kolei kontrola negatywna to dodatkowa próba, ale bez użycia czynnika, o którym wiemy, że wywołuje badane zjawisko. Z założenia, wynikiem tej próby będzie brak zmiany mierzonego parametru. Nie w każdym układzie doświadczalnym da się zaplanować obie próby kontrolne.

  

Zajęcia z pytaniem problemowym zakładają dyskusję między uczniami na podstawie dodatkowych pytań lub przykładów dostarczonych przez nauczyciela. Zajęcia te kształcą umiejętność doboru i formułowania argumentów, słuchania osób o innym stanowisku oraz wyciągania wniosków. W wyniku dyskusji cenne byłoby wypracowanie stanowiska, by uczniowie przekonali się, że każda konstruktywna rozmowa powinna zakończyć się rzetelnym podsumowaniem.

 

Gry dydaktyczne wykorzystują czynnik zabawy, co wspomaga przyswajanie wiedzy przez uczniów. Gry rozwijają pomysłowość, aktywność, samodzielność, umiejętność pracy w grupie oraz uczą radzenia sobie z emocjami. Grając uczymy się przez działanie i przeżywanie. Sukcesem jest osiągnięcie celu, a nie wygrana z innymi, czy zajęcie pierwszego miejsca. Najważniejsza w grze jest dydaktyka. Wygrywać mają wszyscy.


Skopiuj poniższy kod HTML, by umieścić artykuł na swojej stronie:

Udostępnij artykuł:

Oprogramowanie do przeglądania plików:

Bibliografia

  1. Grażyna Francuz – Ornat, Teresa Kulawik, Maria Nowotny – Różańska; Spotkania z fizyką podręcznik dla gimnazjum, część 3, Nowa Era Sp. z. o.o., Warszawa 2010.
  2. Świat fizyki podręcznik dla uczniów gimnazjum, pod redakcją Barbary Sagnowskiej, ZamKor, Kraków 2011.

Skopiuj poniższy kod HTML, by umieścić artykuł na swojej stronie:

Udostępnij artykuł:

Oprogramowanie do przeglądania plików: